DBD––taxonomically broad transcription factor predictions: new content and functionality

نویسندگان

  • Derek Wilson
  • Varodom Charoensawan
  • Sarah K. Kummerfeld
  • Sarah A. Teichmann
چکیده

DNA-binding domain (DBD) is a database of predicted sequence-specific DNA-binding transcription factors (TFs) for all publicly available proteomes. The proteomes have increased from 150 in the initial version of DBD to over 700 in the current version. All predicted TFs must contain a significant match to a hidden Markov model representing a sequence-specific DNA-binding domain family. Access to TF predictions is provided through http://transcriptionfactor.org, where new search options are now provided such as searching by gene names in model organisms, searching for all proteins in a particular DBD family and specific organism. We illustrate the application of this type of search facility by contrasting trends of DBD family occurrence throughout the tree of life, highlighting the clear partition between eukaryotic and prokaryotic DBD expansions. The website content has been expanded to include dedicated pages for each TF containing domain assignment details, gene names, links to external databases and links to TFs with similar domain arrangements. We compare the increase in number of predicted TFs with proteome size in eukaryotes and prokaryotes. Eukaryotes follow a slower rate of increase in TFs than prokaryotes, which could be due to the presence of splice variants or an increase in combinatorial control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DBD: a transcription factor prediction database

Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, whic...

متن کامل

Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain.

Here we show a novel pathway of transcriptional regulation of a DNA-binding transcription factor by coupled interaction and modification (e.g., acetylation) through the DNA-binding domain (DBD). The oncogenic regulator SET was isolated by affinity purification of factors interacting with the DBD of the cardiovascular transcription factor KLF5. SET negatively regulated KLF5 DNA binding, transact...

متن کامل

Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the "streetwise" GATA family of transcription factors.

The transcriptional activator AREA is a member of the GATA family of transcription factors and mediates nitrogen metabolite repression in the fungus Aspergillus nidulans. The nutritional versatility of A. nidulans and its amenability to classical and reverse genetic manipulations make the AREA DNA binding domain (DBD) a useful model for analyzing GATA family DBDs, particularly as structures of ...

متن کامل

Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain

Developmental stage-specific expression of the β-type globin genes is regulated by many cis- and trans-acting components. The adult β-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger...

متن کامل

Protein‐Functionalized DNA Nanostructures as Tools to Control Transcription in Zebrafish Embryos

The unique structure-directing properties of DNA origami nanostructures (DONs) show great potential to specifically manipulate intracellular processes. We report an innovative concept to selectively activate the transcription of a single gene in the developing zebrafish embryo. We reason that engineering a designer transcription factor in which a rigid DON imposes a fixed distance between the D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008